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• PHS shows high diagnostic accuracy in
distinguishing AD, MCI, and healthy
controls.

• PHS can predict cognitive decline and
progression of MCI to AD.

• PHS impacts the relationship between
neurodegenerative biomarkers and
cognitive decline.
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A R T I C L E I N F O
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A B S T R A C T

Background: Growth associated protein-43 (GAP-43) and neurofilaments light (NFL) are biomarkers of synaptic
and axonal injury, and are associated with cognitive decline in Alzheimer’s disease (AD) contiuum. We inves-
tigated whether Polygenic Hazard Score (PHS) is associated with specific biomarkers and cognitive measures,
and if it can predict the relationship between GAP-43, NFL, and cognitive decline in AD.
Method: We enrolled 646 subjects: 93 with AD, 350 with mild cognitive impairment (MCI), and 203 cognitively
normal controls. Variables included GAP-43, plasma NFL, and PHS. A PHS of 0.21 or higher was considered high
risk while a PHS below this threshold was considered low risk. A subsample of 190 patients with MCI with four
years of follow-up cognitive assessments were selected for longitudinal analysis . We assessed the association of
the PHS with AD biomarkers and cognitive measures, as well as the predictive power of PHS on cognitive decline
and the conversion of MCI to AD.
Results: PHS showed high diagnostic accuracy in distinguishing AD, MCI, and controls. At each follow-up point,
high risk MCI patients showed higher level of cognitive impairment compared to the low risk group. GAP-43
correlated with all follow-up cognitive tests in high risk MCI patients which was not detected in low risk MCI
patients. Moreover, high risk MCI patients progressed to dementia more rapidly compared to low risk patients.
Conclusion: PHS can predict cognitive decline and impacts the relationship between neurodegenerative bio-
markers and cognitive impairment in AD contiuum. Categorizing patients based on PHS can improve the pre-
diction of cognitive outcomes and disease progression.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that is the
primary cause of dementia among elderly individuals (Salvadores et al.,
2020). The primary pathological mechanisms initiate many years before
the onset of clinical dementia symptoms and involve the build-up of
amyloid beta protein (Aβ), leading to the formation of plaques, which is
then followed by the aggregation of hyperphosphorylated tau protein
(P-tau) into neurofibrillary tangles (Öhman et al., 2021). Accordingly, it
is essential to identify patients as soon as possible and offer them prompt
management (Jack et al., 2018). Using a comprehensive panel of
AD-associated biomarkers can dramatically improve the accuracy of
early AD diagnosis and accelerate the process (Olsson et al., 2016,
Planche et al., 2023). Higher levels of P-tau and lower Aβ levels is
commonly reported in AD (Friedrich et al., 2010, Hansson et al., 2017),
as Aβ causes amyloid plaques in the brain, whereas P-tau causes
neurofibrillary tangles. Tau aggregation in cerebrospinal fluid (CSF),
serving as early pathological biomarkers of AD, are associated with
cognitive decline in individuals. The most prominent association be-
tween AD biomarkers and cognitive decline is observed in memory and
other cognitive domains, such as executive function and visuospatial
abilities (Öhman et al., 2021).

Axonal and synaptic degeneration biomarkers are also suggested as
biomarkers for AD. Synaptic markers found in CSF are potential candi-
dates for use as neurodegeneration biomarkers. It is not yet clear when
synaptic dysfunction first manifests over the course of the disease.
However, synapse degradation and loss are fundamental aspects of AD
pathophysiology (Janelidze et al., 2016). Recent research found
elevated levels of synaptic biomarkers in the CSF of individuals with AD
and prodromal AD (Citron et al., 1994, Portelius et al., 2015). These
markers include neurogranin, growth-associated protein 43 (GAP-43),
synaptosomal-associated protein 25, and synaptotagmin proteins
(Milà-Alomà et al., 2020, Skene et al., 1986), where the presynaptic
protein GAP-43, also known as neuromodulin, is intimately linked to
synaptic plasticity, axonal guidance, and neurite outgrowth
(Milà-Alomà et al., 2020, Skene et al., 1986). Synaptic loss is evident
even in the early stage of AD, known as mild cognitive impairment (MCI)
and is associated with cognitive decline measures (Pereira and al., 2021,
Zhang et al., 2018). Additionally, studies have linked tau pathology and
amyloid abnormalities with elevated CSF levels of GAP-43 in patients
with MCI and AD, showing the GAP-43 effects on cognition assessment
in AD patients (Citron et al., 1994, Hulo et al., 2002, McGrowder et al.,
2021, Sandelius et al., 2019). Furthermore, neurofilament light chain
(NFL), as a quantitative indicator of ongoing axonal injury, indicates the
occurrence of ongoing neuroinflammatory and neurodegenerative

processes, hence its excessive levels may provide a prognostic value in
various neurological disorders (Gaetani et al., 2019, Kuhle et al., 2019).
NFL concentrations have been found to increase in CSF and blood among
central nervous system (CNS) and peripheral nervous system (PNS)
arising diseases indicating axonal damage or degeneration (Olsson et al.,
2019).

Despite extensive research on fluid biomarkers of AD, affected in-
dividuals still manifest differential trajectories despite similar baseline
biomarker burden. This could be linked to the substantial role of genetic
susceptibility in the age of onset and course of AD. The Polygenic Risk
Score (PRS) combines the impact of numerous genetic variants to create
a unifiedmeasure for forecasting disease risk and has been recognized as
a recent trend in AD research. While PRS has demonstrated predictive
efficacy in various intricate conditions, it falls short in considering the
age of onset, which is particularly crucial in neurodegenerative diseases
like AD. Addressing this gap, the recent introduction of the Polygenic
Hazard Score (PHS) surpasses this limitation by estimating an in-
dividual’s age-specific risk of developing AD (Desikan et al., 2017). This
assessment of immediate risk for AD proves to be valuable supplemen-
tary information, potentially enhancing the tracking of disease
advancement and enabling timely interventions. The conceptual dif-
ference between PHS and PRS is that PRS employs odds ratios from
case-control analyses, while PHS uses single nucleotide polymorphism
(SNP) level effect size estimates from survival analysis (Cox proportional
hazards model). The second distinction is that effect sizes for PRS were
derived univariately, while hazard ratios for PHS were determined using
a multivariate technique (Altmann et al., 2020). PHS has exhibited
marginally superior predictive abilities compared to relying solely on
APOE ε4 status (Vacher et al., 2022).

Despite current research on AD, early and accurate diagnosis of AD
remains a challenge. This study investigates the potential of combining
neurodegenerative biomarkers with PHS for a more robust prediction of
cognitive decline in the AD spectrum than looking at these factors
separately. We investigated whether PHS is associated with specific
biomarkers and cognitive measures, and if it can impact the relationship
between levels of GAP-43 and NFL, markers of synaptic and axonal
dysfunction, and cognitive decline in AD stages. We assumed that in-
dividuals with a higher PHS, indicative of increased genetic risk, will
exhibit a stronger association between these biomarkers and cognitive
decline. This could ultimately result in a more comprehensive approach
leading to early identification and treatment planning for AD.
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2. Material and methods

2.1. ADNI database

Data were extracted from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database, a longitudinal study initiated in 2004 with
the leadership of Dr. Michael W. Weiner as a public-private partnership.
ADNI’s goal is early diagnosis of AD and tracking of AD with the test of
clinical trials through functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET), blood biological markers, and
tests of CSF. ADNI’s website is available for more information (https://
adni.loni.usc.edu/).

2.2. Participants and classification criteria

All participants with available cognitive assessments, CSF GAP-43,
plasma NFL, and PHS were extracted from the ADNI database. MCI
patients (cognitively normal subjects (CN) and AD subjects were omitted
due to the small size of the sample) with four years of follow-up were
selected for subgroup longitudinal analysis. Due to high missing data
points, we considered the AD biomarkers at only baseline timepoint,
though cognitive tests data obtained for four years of follow-up.

CN subjects, as categorized by the ADNI, were healthy individuals
matched by age to the MCI group with no significant impairment in
cognitive functions or activities of daily living. Inclusion criteria for CN
subjects included a mini-mental state examination (MMSE) score of
24–30, a clinical dementia rating sum of boxes (CDR) score of 0, and
delayed recall scores from logical memory II (Wechsler memory scale-
revised) of ≥ 9 for 16 years of education, ≥ 5 for 8–15 years of educa-
tion, and ≥ 3 for 0–7 years of education (Petersen et al., 2010). A
diagnosis of MCI was made based on having an MMSE score of 24–30, a
CDR score of 0.5 with a memory box score of 0.5 or greater, and delayed
recall scores from Logical Memory II of ≤8 for 16 years of education, ≤4
for 8–15 years of education, and ≤ 2 for 0–7 years of education. Addi-
tionally, individuals must exhibit largely intact general cognition and
functional performance and must not qualify for a diagnosis of dementia
(Petersen et al., 2010). Lastly, a diagnosis of AD required an MMSE score
ranging from 20 to 26. They should have a CDR score of 0.5 or 1, and
their memory performance, based on the Logical Memory II subscale,
must be below specific cutoff scores:≤8 for 16 years of education,≤4 for
8–15 years of education, and ≤2 for 0–7 years of education. Addition-
ally, they must have a diagnosis of mild AD and meet the National
Institute of Neurological and Communicative Disorders and Stroke-
–Alzheimer’s Disease and Related Disorders Association criteria for
probable AD (Petersen et al., 2010).

According to ADNI (https://adni.loni.usc.edu/), exclusion criteria
for subjects included the use of antidepressant medications with anti-
cholinergic properties, regular use of narcotic agents exceeding two
doses per week within four weeks of screening, and the use of neuro-
leptic medications or other drugs with anticholinergic properties within
four weeks of screening. Additionally, the use of antiparkinsonian
medications within four weeks of screening, participation in any other
investigational drug studies within four weeks of screening, and the
initiation or discontinuation of diuretic drugs within four weeks prior to
screening were also grounds for exclusion. For subjects with MCI,
cholinesterase inhibitors and memantine were permitted if the dose had
been stable for four weeks prior to screening (Petersen et al., 2010).
Similarly, estrogen, estrogen-like compounds, and vitamin E were
allowed if the dose had been stable for four weeks prior to screening.
Participants were required to report any medication changes to the site
investigators once enrolled in the study (Petersen et al., 2010).

2.3. Cognitive assessments

The CDR-SB scale, Montreal cognitive assessment (MoCA), MMSE,
and the Alzheimer’s disease assessment scale (ADAS) were utilized for a

comprehensive neuropsychological evaluation.
The CDR is a rating system for patients with senile dementia of AD

type, introduced in 1982 with later revisions (Hughes et al., 1982, Berg,
1988). CDR evaluates each participant based on interviewing both the
subject and their caregiver (informant), combined with the clinician’s
professional judgment. It assesses six cognitive and behavioral domains:
memory, orientation, judgment and problem solving, community af-
fairs, home and hobbies performance, and personal care. There are two
sets of questions: one directed at the informant, covering the subject’s
memory problems, judgment, community affairs, home life, hobbies,
and personal care, and another directed at the subject, focusing on
memory, orientation, and judgment and problem-solving abilities The
CDR uses a scale from 0 to 3, where 0 indicates no dementia, 0.5 suggests
questionable dementia, 1 corresponds to mild cognitive impairment
(MCI), 2 indicates moderate cognitive impairment, and 3 represents
severe cognitive impairment (Morris et al., 1997). CDR-SB is a sum-
mation of each individual score for each category of CDR.

The MoCA was developed in 2005 as a screening tool for mild de-
mentia in the community and academic settings and was more sensitive
thanMMSE to detect MCI (sensitivity 100 vs. 78 %, specificity 87 vs. 100
%) (Nasreddine et al., 2005). Throughout these years, it has been used
worldwide as a recognized cognitive test for the general population.
MoCA measures cognitive domains such as visuospatial/executive,
naming, orientation, memory and recall, language, abstraction, and
attention. The highest possible score is 30, with those with 12 years of
education receiving an extra point to account for educational differ-
ences. Cut-off scores determine the severity of cognitive impairment:
scores 18–25, 10–17, and less than 10 represent mild, moderate, and
severe impairment, respectively.

MMSE is 30-item assessment of global cognitive status and is regu-
larly applied for testing dementia, cognitive impairment, and ques-
tioning about cognitive areas and assessing them, for instance, memory,
attention, orientation, language, and visual construction (Bernard &
Goldman, 2010). The orientation tests included graded questions to
orientation to time and place and accounted for 10 points. The memory
registration asked the subjects to remember three unrelated items, and
then the memory recall asked them to repeat the items later. Then, the
serial calculation was tested for degree of attention by subtraction 7
from 100 with five repeats. Finally, the language tasks included naming,
repeating, following 3-stage orders, reading, writing, and copying
design. Its total score ranged from 0 (worst) to 30 (best) points (Folstein
et al., 1975).

The ADAS is frequently used in pre-dementia research studies,
although it was initially designed for studies on dementia (Kueper et al.,
2018). The ADAS was developed to assess cognitive and non-cognitive
dysfunction in patients with mild to severe AD. The ADAS takes 45
minutes to administer completely, and the total score on this tool ranges
from 0 to 150, with higher scores indicating poorer performance. The
ADAS consists of two subscales; however, the non-cognitive subscale
(ADAS-Noncog) will not be discussed further because it is employed less
frequently (Rosen et al., 1984). Word recall and word recognition ac-
count for most of the ADAS-11 scores in pre-dementia populations, and
age may affect scores in older adults with CN (Kueper et al., 2018). In
addition, the modified 13-item ADAS scale (Mohs et al., 1997) includes
all of the original ADAS items, a number cancellation exercise, and a
delayed free recall task for a total of 85 points. Higher scores denote
greater severity, precisely similar to the original version. According to
Mohs et al. (Mohs et al., 1997), these additional items aim to broaden
the scope of symptom severity and the number of cognitive domains
without significantly increasing the duration of administration (Mohs
et al., 1997).

2.4. GAP and NFL measurements

CSF GAP-43 was measured using ELISA technology, employing an in-
house ELISA method previously described in detail (Sandelius et al.,
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2019). The ELISA was developed by combining the mouse monoclonal
GAP-43 antibody NM4 (coating antibody) from Fujirebio, Ghent,
Belgium, and a polyclonal GAP-43 antibody (detector antibody) from
ABB-135, Nordic Biosite, Täby, Sweden, both of which recognize the
C-terminal of GAP-43. Board-certified laboratory technicians conducted
the analyses, with values reported in pg/mL. The assay range is 312-20,
000 pg/mL, with a total of 1268 data points collected. Quality control
(QC) samples comprised leftover CSF samples from the Clinical Neuro-
chemistry Laboratory at Sahlgrenska University Hospital, Mölndal,
Sweden. During the clinical evaluation study, the repeatability CV% for
QC1 and QC2was 5.5 % versus 11%, and the inter-assay CV%was 6.9 %
versus 15.6 %.

This study also incorporated the axonal NFL protein examination in
plasma from ADNI-1 samples. Plasma NFL was measured using the
Single Molecule array (Simoa) technique. This assay employs a combi-
nation of monoclonal antibodies and purified bovine NFL as a calibrator.
All samples were measured in duplicate, except for one due to technical
issues. Intra-assay and interassay coefficients of variation were
11.7–12.1 % for QC samples with clinically relevant low and high
concentrations (17.9 and 257 pg/mL, respectively) (Mielke et al., 2019).
The validated measurement range was 6.7–1,620 pg/mL. The analytical
sensitivity of the assay was less than 1.0 pg/mL, and no sample had NFL
levels below the limit of detection (LOD). For more detailed information,
see https://adni.loni.usc.edu/.

2.5. Polygenic hazard score

The PHS was used to quantify age-specific genetic risk for AD
(Desikan et al., 2017). The PHS used in the current study was calculated
for each participant as the vector product of that individual’s genotype
for examining the relationship between genetic predisposition and
neurodegenerative processes in cognitive impairment by determining a
cut-off value for the PHS. The PHS was calculated for all participants as
described in detail by Desikan et al. (2017). Briefly, using genotype data
from 17,008 AD cases and 37,154 controls from the International Ge-
nomics of Alzheimer’s Project (IGAP Stage 1) drawn from four different
consortia across North America and Europe (including the United States
of America, England, France, Holland, and Iceland), they identified
AD-associated SNPs with a significance threshold of p< 10^-5 (Naj et al.,
2021). These SNPs were integrated into a Cox proportional hazard
model using genotype data from 6,409 AD patients and 9,386 older
controls from Phase 1 of the Alzheimer’s Disease Genetics Consortium
(ADGC). This approach gave each participant a PHS, allowing estimates
of instantaneous risk for developing AD based on genotype and age. To
derive these estimates, Desikan et al. combined population-based inci-
dence rates with genotype-derived PHS for each individual and tested
replication in multiple independent cohorts, including ADGC Phase 2,
National Institute on Aging Alzheimer’s Disease Center (NIA ADC), and
ADNI, encompassing a total of 20,680 participants (Desikan et al.,
2017). Specifically, 31 AD-associated SNPs were selected through a
stepwise Cox proportional hazards model, adjusting for baseline allele
frequencies with European genotypes from the 1000 Genomes Project.
These SNPs include ε2 allele, ε4 allele, and others such as rs4266886 and
rs61822977. The method was further validated using an
ADGC-independent sample of 692 older controls and participants with
MCI or AD from ADNI-1, illustrating the utility of the genotype-derived
PHS in estimating cumulative incidence rates for AD development based
on genotype and age.

2.6. Statistical analysis

Statistical analyses were conducted using R (version 4.1.2). The
Shapiro–Wilk normality test was used to assess normality. Due to de-
viation from the normal distribution, non-parametric tests were
employed for further analysis. Categorical variables were analyzed using
the Chi-square test, and continuous variables were evaluated using the

Kruskal–Wallis test. Post hoc analyses coupled with the Bonferroni
correction for multiple comparisons were performed for continuous
variables. The median and interquartile range (IQR) were used to
summarize continuous variables. To evaluate the diagnostic accuracy of
each biomarker, receiver operating characteristic (ROC) curve analyses
were employed to calculate the area under the curve (AUC) with 95 %
confidence intervals (CIs). The Youden index was utilized to determine
the cut-off point for PHS and the obtained score was applied in the
subsequent analyses. Youden index identifies the point on the ROC curve
that maximizes the difference between true positive rate (sensitivity)
and false positive rate (1-specificity), thus providing an optimal balance
between sensitivity and specificity. The threshold corresponding to the
maximum Youden Index was selected as the optimal cut-off point
through the following formula:

Jmax = maxPHS{sensitivity(PHS) – specificity(PHS) - 1}.

The partial correlation test was employed to examine correlations
between baseline CSF GAP-43 or plasma NFL levels and CSF core AD
biomarkers (including CSF Aβ42, T-tau, and P-tau) and cognitive tests
(including MMSE, CDR-SB, MoCA, ADAS11, and ADAS13). The effect of
age, gender, education, and APOE ε4 status (carrier or noncarrier) were
controlled in all partial correlation tests. For the longitudinal cognitive
assessments, a specific approach was implemented to handle missing
data. Participants with two or more missing cognitive test scores were
excluded from the analysis. For cases with a single missing test score, the
missing value was imputed using the mean of the scores from the pre-
vious and following years. This method affected only 2.3 % of the data,
ensuring that the overall dataset remained robust and reliable.
Furthermore, for each longitudinal timepoint, we applied the Mann-
Whitney test to compare cognitive scores between the high risk(+)
and low risk(-) PHS groups. The p-adjusted value (Padj) calculated using
the Bonferroni method was applied to correct for multiple testing and is
reported as Padj. Finally, the predictive role of PHS in the MCI to AD
conversion was assessed using the Cox proportional hazard model with
the Logrank method. Hazard ratios with 95 % CIs were calculated to
determine the magnitude of the effect.

2.7. Data and code availability

Data used to prepare this manuscript were obtained from the ADNI
database (http://adni.loni.usc.edu) and are freely available after regis-
tration. Python and R scripts to analyse the data and to produce the
results presented here are available at https://github.com/MEFarhadi
eh/PHS2AD.

3. Results

3.1. Characteristics of participants

A total of 646 subjects including 93 AD, 350 MCI, and 203 CN were
included (Supplementary Figure 1). Table 1a depicts demographics,
biomarkers, and cognitive assessments of all participants in each group.
Significant age differences among the three groups were detected (p <

0.001). PHS showed substantial differences between CN, MCI, and AD (p
< 0.001). AD biomarkers including CSF T-tau, CSF P-tau, CSF GAP-43,
plasma NFL were significantly higher in the AD group compared to
MCI and CN groups (p < 0.001) and in MCI compared to CN (Padj <
0.05), except for GAP-43 and NFL in the MCI group compared to CN. As
expected, the CN and MCI groups showed lower level of cognitive
impairment than the AD group (p < 0.001). Table 1b represents longi-
tudinal four-year follow-up data of selected 190 MCI patients. There
were no significant differences in demographics, biomarkers, and
cognitive measurements across the four time points.
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3.2. Diagnostic ability of PHS, GAP-43, NFL, and CSF biomarkers

ROC analyses were conducted, and AUCs were calculated to evaluate
the diagnostic accuracy of PHS and AD biomarkers. Biomarkers showed
high diagnostic accuracy in distinguishing AD from MCI and CN, but
limited effectiveness in differentiating between MCI and CN (Table 2
and Fig. 1). PHS also demonstrated a similar performance with relatively
high AUCs in the comparisons (AUC > 0.6, p < 0.001). Moreover, based
on Youden’s method, best cut-off points between CN, MCI, and AD were
determined for PHS, and we considered a PHS of 0.21 or higher as high
risk and a PHS below this threshold as low risk.

3.3. GAP-43 and NFL levels correlate with AD biomarkers and cognitive
assessments in the baseline

Partial correlation was used to assess the correlation of GAP-43 and
NFL with other biomarkers and cognitive assessments controlling for
potential confounding variables (Table 3). Our analyses demonstrated
that CSF T-tau and P-tau were significantly and positively correlated
with GAP-43 in all three groups. Additionally, in the CN group, there
was also a significant positive correlation between CSF Aβ42 and GAP-
43 (Padj values= 0.001).Furthermore, only ADAS11 and ADAS13 in
MCI group showed a significant positive correlation with plasma NFL
(Padj values < 0.05).

In the next step, the abovementioned correlations were explored in
subjects with low risk and high risk PHS in each diagnostic group. As
shown in Supplementary Table 1, the correlation between GAP-43
with CSF T-tau and CSF P-tau in the six subgroups was significant and
positive. Interstingly, in the high risk MCI group, GAP-43 was correlated
with cognitive measures, whereas this correlation was not detected in
the low risk group. The NFL biomarker showed no statistically signifi-
cant correlations across these groups. .

3.4. Correlations of baseline GAP-43 and NFL with four-year cognitive
tests among the MCI group

A total of 190 MCI subjects were selected for the four-year analyses.
According to Table 4, baseline CSF GAP-43 had a significant negative
correlation with baseline MMSE (rs= -0.24, Padj value= 0.003), while a
positive correlation with baseline ADAS13 was observed (rs= 0.22, Padj
value= 0.008). During the first and second years of follow-up, GAP-43
exhibited significant correlations with cognitive assessments, except for
CDR-SB. In the third and fourth years, however, GAP-43 showed

Table 1a
Demographics, biomarkers, and cognitive assessments across study groups.

Characteristic CN (n = 203) MCI (n = 350) AD (n = 93) p value

Age 73 (68, 78) 71 (66, 77) 74 (69, 79) 0.002 a,b

Sex 0.012
Female 112 (55 %) 156 (45 %) 36 (39 %)
Male 91 (45 %) 194 (55 %) 57 (61 %)
Education 16 (16, 18) 16 (14, 18) 16 (14, 18) 0.005 c

APOE ε4 ⸆ <0.001
0 146 (72 %) 178 (51 %) 29 (31 %)
1 51 (25 %) 134 (38 %) 43 (46 %)
2 6 (3.0 %) 38 (11 %) 21 (23 %)
PHS -0.14 (-0.38,

0.47)
0.27 (-0.24,
1.01)

0.79 (0.11,
1.27)

<0.001
a,b,c

CSF Aβ42 1,336 (872,
1,700)

900 (679,
1,371)

624 (490, 787) <0.001
a,b,c

CSF T-tau 216 (179, 300) 248 (187, 330) 354 (276, 451) <0.001
a,b,c

CSF P-tau 20 (16, 27) 23 (17, 33) 34 (27, 46) <0.001
a,b,c

GAP-43 4,387 (3,189,
6,286)

4,387 (3,258,
6,244)

5,864 (4,082,
8,543)

<0.001
b,c

Plasma NFL 32 (25, 42) 35 (26, 46) 42 (33, 57) <0.001
b,c

MMSE 29 (29, 30) 28 (27, 29) 23 (21, 25) <0.001
a,b,c

CDR-SB 0.00 (0.00,
0.00)

1.50 (1.00,
2.00)

4.50 (3.50,
5.50)

<0.001
a,b,c

ADAS11 6 (3, 7) 9 (6, 12) 19 (16, 24) <0.001
a,b,c

ADAS13 9 (6, 12) 14 (10, 19) 30 (24, 36) <0.001
a,b,c

MoCA 26 (24, 28) 23 (21, 25) 19 (14, 20) <0.001
a,b,c

Measurements were expressed by median (IQR); and number (%).
a = significant difference between CN and MCI
b
= significant difference between MCI and AD

c = significant difference between CN and AD.
⸆ : Number of alleles are presented for APOE ε4.
Abbreviations: CN, cognitively normal; MCI, mild cognitive impairment; AD,

Alzheimer’s disease; PHS, polygenic hazard score; CSF, cerebrospinal fluid; Aβ,
amyloid-β; T-tau, total tau; P-tau, plasma phosphorylated tau; GAP-43, growth-
associated Protein 43; NFL, neurofilament light chain; MMSE, mini-mental state
examination; CDR-SB, clinical dementia rating scale sum of boxes; ADAS, Alz-
heimer’s disease assessment scale; MoCA, Montreal cognitive assessment.

Table 1b
Demographics, biomarker features, and cognitive assessments of the selected MCI patients during the four-year follow-up.

Characteristic Baseline (n= 190) 12 months (n= 190) 24 months (n= 190) 36 months (n= 190) 48 months (n= 190) p value

Age 70 (7) 71 (7) 72 (7) 73 (7) 74 (7) <0.001
Sex 1

Female 85 / 190 (45 %) 85 / 190 (45 %) 85 / 190 (45 %) 85 / 190 (45 %) 85 / 190 (45 %)
Male 105 / 190 (55 %) 105 / 190 (55 %) 105 / 190 (55 %) 105 / 190 (55 %) 105 / 190 (55 %)

Education 16 (3) 16 (3) 16 (3) 16 (3) 16 (3) 1
APOE ε4 1

0 96 / 190 (51 %) 96 / 190 (51 %) 96 / 190 (51 %) 96 / 190 (51 %) 96 / 190 (51 %)
1 72 / 190 (38 %) 72 / 190 (38 %) 72 / 190 (38 %) 72 / 190 (38 %) 72 / 190 (38 %)
2 22 / 190 (12 %) 22 / 190 (12 %) 22 / 190 (12 %) 22 / 190 (12 %) 22 / 190 (12 %)

PHS 0.45 (0.80) 0.45 (0.80) 0.45 (0.80) 0.45 (0.80) 0.45 (0.80) 1
MMSE 28 (2) 28 (2) 27 (3) 27 (4) 26 (4) 0.065
CDR-SB 1.40 (0.88) 1.47 (1.22) 1.84 (1.80) 2.22 (2.60) 2.78 (3.62) 0.2
ADAS11 9 (4) 9 (5) 9 (6) 10 (7) 12 (10) 0.2
ADAS13 14 (6) 14 (8) 15 (9) 16 (10) 18 (13) 0.2
MoCA 23 (3) 24 (3) 24 (4) 23 (4) 23 (5) 0.4

Measurement values were expressed by Median (IQR); and number ( %).
⸆: Number of alleles are presented for APOE ε4.
Abbreviations: MCI, mild cognitive impairment; PHS, polygenic hazard score; CSF, cerebrospinal fluid; Aβ, amyloid-β; T-tau, total tau; P-tau, plasma phosphorylated
tau; MMSE, mini-mental state examination; CDR-SB, clinical dementia rating scale sum of boxes; ADAS, Alzheimer’s disease assessment scale; MoCA, Montreal
cognitive assessment.
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significant correlationswith all assessments. A similar pattern was also
observed for baseline plasma NFL.

Supplementary Table 2 represents the abovementioned analyses in
two subgroups of the selected MCI subjects based on PHS status. At each

stage, GAP-43 was significantly correlated with cognitive measures in
high risk MCI subjects. In contrast, no correlation between GAP-43 and
cognitive measures was observed during either time period. However,
this pattern did not hold for NFL correlations, as NFL showed significant
correlations with cognitive assessments in both high risk and low risk
groups.

3.5. Longitudinal cognitive test analysis based on PHS status

To evaluate the impact of PHS on cognitive decline during the
follow-up, cognitive assessments were compared between high risk and
low risk PHS groups at each time point (Supplementary Table 3,
Fig. 2). As depicted in Figure 2, ADAS and CDR-SB scores were higher in
the high risk group, whereas MMSE and MoCA scores were lower,
indicating more pronounced cognitive decline in individuals with high
risk PHS.

3.6. Ability of PHS to predict future cognitive impairment

The potential of PHS to predict conversion from MCI to AD was
explored by performing the Cox proportional hazard model. The sub-
jects with high risk PHS progressed to dementia more rapidly compared
to the low risk group (Hazard ratio= 4.661, p < 0.001; Fig. 3).

4. Discussion

We investigated the role of PHS in predicting the associations be-
tween markers of neurodegeneration (GAP-43 and NFL) and cognitive
decline in patients with MCI or AD. Axonal degeneration results from tau
dissociation from microtubules, which can be detected indirectly using
the NFL biomarker (Mattsson et al., 2017). Contrary to expectations, this
study revealed no correlation between CSF Tau, P-Tau, and NFL. This
result confirms recent findings that NFL, at least in the early stages of the
disease, is not the most reliable predictor of amyloid and tau deposition
(Pereira and al., 2021). While our use of plasma NFL measurements
instead of CSF levels could be a contributing factor (Aschenbrenner
et al., 2020), future explorations should consider alternative factors.
This observation may also be attributed to the NFL or to the fact that
these pathologies are distinct, and the early signs of cognitive

Table 2
ROC analyses of biomarkers and PHS.

ROC analysis Variable AUC CI Low CI Up p value

CN vs AD PHS 0.747 0.687 0.807 8.73E-12
GAP-43 0.655 0.586 0.722 1.83E-05
NFL 0.699 0.639 0.757 3.83E-08
Aβ42 0.839 0.784 0.890 4.23E-21
T-tau 0.802 0.749 0.852 7.65E-17
P-tau 0.827 0.779 0.874 1.70E-19

CN vs MCI PHS 0.636 0.583 0.680 8.69E-08
GAP-43 0.507 0.457 0.555 7.73E-01
NFL 0.547 0.497 0.597 6.52E-02
Aβ42 0.654 0.608 0.700 1.19E-09
T-tau 0.567 0.517 0.613 8.12E-03
P-tau 0.580 0.531 0.627 1.62E-03

MCI vs AD PHS 0.612 0.549 0.673 9.36E-04
GAP-43 0.645 0.579 0.705 1.76E-05
NFL 0.647 0.591 0.705 1.23E-05
Aβ42 0.736 0.673 0.790 2.25E-12
T-tau 0.722 0.667 0.773 4.54E-11
P-tau 0.729 0.677 0.778 1.05E-11

CN vs AD&MCI PHS 0.612 0.549 0.673 9.36E-04
GAP-43 0.645 0.579 0.705 1.76E-05
NFL 0.647 0.591 0.705 1.23E-05
Aβ42 0.736 0.673 0.790 2.25E-12
T-tau 0.722 0.667 0.773 4.54E-11
P-tau 0.729 0.677 0.778 1.05E-11

AD vs CN&MCI PHS 0.612 0.549 0.673 9.36E-04
GAP-43 0.645 0.579 0.705 1.76E-05
NFL 0.647 0.591 0.705 1.23E-05
Aβ42 0.736 0.673 0.790 2.25E-12
T-tau 0.722 0.667 0.773 4.54E-11
P-tau 0.729 0.677 0.778 1.05E-11

Abbreviations: CN, cognitively normal; MCI, mild cognitive impairment; AD,
Alzheimer’s disease; ROC, receiver operating characteristic; AUC, area under the
curve; CI Low, lower confidence interval 95 %; CI Up, upper confidence interval
95 %; PHS: polygenic hazard score; GAP-43, growth-associated Protein 43; NFL,
neurofilament light chain; Aβ, amyloid-β; T-tau, total tau; P-tau, plasma phos-
phorylated tau.

Fig. 1. ROC analyses for the diagnostic accuracy of biomarkers and PHS. (A) CN versus AD, (B) CN versus MCI, (C) MCI versus AD, (D) CN versus MCI with AD, and
(E) AD versus CN with MCI.
Abbreviations: PHS, polygenic hazard score; CN, cognitive normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; ROC, receiver operating characteristic;
AUC, area under the curve; GAP-43, growth-associated protein 43; NFL, neurofilament light chain; ABETA, amyloid amyloid-β; P-tau, plasma phosphorylated TAU.
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dysfunction detected by the NFL may not be caused by axonal damage
(Das et al., 2023). Further investigation into the dynamic relationship of
these biomarkers through AD progression could shed light on this
matter. On the other hand, we found significant positive correlations
between CSF GAP-43 and CSF T-tau, and P-tau in the CN, MCI, and AD
groups. The findings are consistent with previous studies, showing tau
phosphorylation to be crucial in synaptic dysfunction as measured by
GAP-43 (Mattsson et al., 2017). Previous studies have demonstrated that
synaptic loss predominates other changes in the progression of AD
(Pereira & al., 2021). Therefore, this particular correlation between
synaptic loss and tau pathology can be used as a marker for the early
diagnosis of AD, since it does not increase in other types of dementia
(Aschenbrenner et al., 2020).

Correlations of baseline GAP-43 or NFL levels with cognitive tests
were assessed longitudinally. MCI patients with elevated baseline GAP-
43 or NFL levels showed more cognitive changes at the four-year follow-
up. For instance, GAP-43 and MMSE showed a weak and negative
relationship in the MCI group, which is consistent with some studies
(Sandelius et al., 2019, Abed et al., 2023), but inconsistent with others
(Das et al., 2023, Zhu et al., 2022). This finding can be explained by the
fact that GAP-43 in AD patients reaches a fixed level after the disease’s
early stages and does not change significantly over time (Sandelius et al.,
2019). However, further studies are needed to validate such results.
These findings suggest that these two biomarkers are important as
diagnostic tools and in predicting disease progression. A limitation of
this study is the lack of analysis of follow-up biomarker data due to data
unavailability. Accordingly, the relationship between baseline
biomarker levels and cognitive decline over time was investigated. This
study could not establish a causal relationship between elevated GAP-43
or NFL and subsequent cognitive decline. Still, it does suggest that
synaptic and axonal degeneration at baseline may play a role in cogni-
tive decline over four years. These findings are supported by previous
results indicating that the goal of AD biomarker discovery has shifted
from simply confirming clinical diagnosis to identifying individuals at
high risk of cognitive decline (Donohue et al., 2017, Fagan et al., 2007,
Soldan et al., 2016).

We also investigated the correlation between Plasma NFL and
cognitive tests in PHS+ and PHS- participants at different time points.
According to previous studies, plasma NFL is a prognostic marker of

cognitive decline (Sandelius et al., 2019, Abed et al., 2023, Zhu et al.,
2022, Donohue et al., 2017, Fagan et al., 2007). The findings showed
significant correlations between Plasma NFL and mental tests, such as
MMSE, CDR-SB, ADAS11, ADAS13, ADASQ4, and MoCA, primarily
among PHS+ participants, as some were also reported in previous
research (Alagaratnam et al., 2021). These results suggest that axonal
degeneration, as indicated by elevated Plasma NFL levels, is accompa-
nied by cognitive decline in individuals with a higher polygenic risk of
dementia. On the other hand, correlations between Plasma NFL and
cognitive tests were less pronounced or non-significant in PHS- in-
dividuals, indicating the crucial role of genetic susceptibility. Regarding
GAP-43, results also showed significant positive correlations between
GAP-43 and various cognitive tests over four years, including ADAS11,
ADAS13, ADASQ4, MMSE, and MoCA among PHS+ participants.
Consistent with some previous studies, these results suggest that higher
levels of synaptic degeneration, as indicated by elevated GAP-43 levels,
are linked to long-term cognitive decline and impairment in patients
with a higher polygenic risk of dementia (Qiang and al., 2022, Selkoe,
2002, Terry et al., 1991). These correlations, observed at various times,
suggest important longitudinal evidence supporting the fact that syn-
aptic degeneration contributes to cognitive decline in this high-risk
subgroup. However, In PHS- individuals over four years, no significant
correlations were found between GAP-43 and cognitive variables, indi-
cating a less pronounced association between synaptic degeneration
(GAP-43) and cognitive decline compared to PHS+ participants. The
findings of differential correlations between GAP-43 or Plasma NFL and
cognitive tests in PHS+ and PHS- subgroups, highlight the potential role
of genetic risk in influencing the relationship between neurodegenera-
tive biomarkers and cognitive decline. In line with the current study,
prior research revealed that individuals with a higher PHS exhibited a
more pronounced cognitive decline, surpassing the rate of decline
observed in individuals with a lower PHS (Tan et al., 2017).

Given the high proportion of missing biomarker data over the four-
year period (77.5 % missing data) and the absence of any participant
with complete annual biomarker evaluation, longitudinal analysis of
biomarkers was not feasible. In contrast, sufficient annual data over the
four-year period were available for cognitive tests. Hence, we were not
able to fully capture the dynamic changes in biomarkers over time and
only used longitudinal cognitive assessments for temporal transitions in

Table 3
Correlations of GAP-43 and NFL levels with other biomarkers and cognitive tests at the baseline.

Variable CN_rs CN_p CN_padj MCI_rs MCI_p MCI_padj AD_rs AD_p AD_padj
GAP-43

Aβ42 0.283 <0.001 0.002 0.095 0.079 1.000 0.243 0.022 0.651
T-tau 0.763 <0.001 <0.001 0.814 <0.001 <0.001 0.658 <0.001 <0.001
P-tau 0.768 <0.001 <0.001 0.793 <0.001 <0.001 0.630 <0.001 <0.001
NFL -0.011 0.878 1.000 0.013 0.813 1.000 -0.020 0.851 1.000
MMSE 0.020 0.774 1.000 -0.150 0.005 0.155 0.007 0.951 1.000
CDR-SB 0.018 0.806 1.000 0.062 0.252 1.000 0.017 0.874 1.000
ADAS11 -0.066 0.356 1.000 0.099 0.067 1.000 0.006 0.957 1.000
ADAS13 -0.063 0.378 1.000 0.141 0.009 0.262 -0.031 0.771 1.000
MoCA 0.182 0.010 0.305 -0.103 0.055 1.000 0.029 0.790 1.000

NFL

Aβ42 -0.202 0.004 0.125 -0.088 0.101 1.000 0.061 0.570 1.000
T-tau 0.072 0.313 1.000 0.062 0.250 1.000 0.063 0.557 1.000
P-tau 0.077 0.277 1.000 0.055 0.311 1.000 0.027 0.801 1.000
GAP-43 -0.011 0.878 1.000 0.013 0.813 1.000 -0.020 0.851 1.000
MMSE -0.031 0.666 1.000 -0.095 0.078 1.000 -0.035 0.744 1.000
CDR-SB 0.015 0.836 1.000 0.101 0.060 1.000 0.019 0.863 1.000
ADAS11 0.044 0.537 1.000 0.180 0.001 0.023 0.188 0.078 1.000
ADAS13 0.085 0.233 1.000 0.213 0.000 0.002 0.149 0.162 1.000
ADASQ4 0.024 0.739 1.000 0.208 0.000 0.003 -0.075 0.485 1.000
MoCA -0.081 0.253 1.000 -0.094 0.082 1.000 -0.009 0.933 1.000

rs= r value of the Spearman partial correlation test.
Abbreviations: CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; Aβ, amyloid-β; T-tau, total tau; P-tau, plasma phosphorylated tau;
GAP-43, growth-associated protein 43; NFL, neurofilament light chain; MMSE, mini-mental state examination; CDR-SB, clinical dementia rating scale sum of boxes;
ADAS, Alzheimer’s disease assessment scale; MoCA, Montreal cognitive assessment.
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this study. Having complete longitudinal biomarker data would have
provided valuable insights into their relationship with PHS over the
time. Moreover, the lack of sufficient data to perform survival analysis
for predicting the transition from the control group to AD and MCI was
evident. Longer-term studies, extending over 10 years or more, are
necessary to provide more accurate information on the predictive per-
formance of the PHS. Similar to most AD research, this study faced
significant challenges in achieving ethnically and racially diverse rep-
resentation in calculating the PHS and in the ADNI cohort. The fact that
the selected SNPs were based on the genomic profiles of individuals
predominantly of non-Hispanic white and East Asian descent compared
to other races may pose challenges in applying the PHS to other ethnic
groups. Future research efforts focusing on AD in populations from Af-
rica, South America, and West Asia will be crucial to addressing and
potentially mitigating these challenges.

It was observed that PHS strongly predicted clinical progression to

AD by analyzing the time to AD diagnosis and the decline in clinical
scores. PHS represented as a valuable predictor of cognitive decline in
people with MCI, as well as the progression from MCI to AD. Modeling
PHS can help determine the best time to start treatment based on indi-
vidual risk profiles, and it can improve clinical trials by including in-
dividuals at a higher risk of developing AD (Motazedi et al., 2022).
Previous studies support the use of PHS as a biomarker for predicting the
onset age of dementia and AD. Desikan et al. discovered a relationship
between PHS and increased volume loss in brain areas associated with
AD, as well as a person’s polygenic profile influencing the risk of
developing AD at a certain age (Desikan et al., 2017). Including PHS in
the predictive models improves the accuracy of results by Kauppi et al.
regarding estimating the risk of disease progression. This indicates that
PHS provides valuable additional information beyond what MRI bio-
markers alone can provide (Kauppi et al., 2018). Tan et al. demonstrated
that PHS was associated with post-mortem amyloid load, neurofibrillart
tangles, Lewy body, and cerebrovascular pathology, validating and
indicating their potential utility in identifying individuals at higher risk
of developing multi-etiological dementia in addition to APOE (Tan and
al., 2019). Despite the effects of APOE ε4, PHS is still valid in MCI and
preclinical AD therapeutic trials for identifying biomarker-positive in-
dividuals at the highest risk of short-term clinical progression (Tan et al.,
2018). Wang et al. examined the decline in verbal memory among
people with AD. They represented the first evidence demonstrating the
impact of PHS status and APOE ε4 allele on those cognitive measures
and interactions with follow-up visits (Wang et al., 2023). Additionally,
in AD-susceptible brain regions, including the default mode network
(DMN), executive control network (ECN), and visuospatial network,
PHS is linked to functional impairments, gray matter atrophy, and am-
yloid accumulation (Li et al., 2021). In MCI patients, PHS-based strati-
fication using a sensitive combined outcome measure can thus improve
trial efficiency, reduce participant burden, and reduce costs. The study’s
focus on PHS’s ability to predict cognitive decline and conversion to AD
aligns with recent researches advocating for personalized risk assess-
ment tools to guide early interventions and therapeutic strategies. The
identified cut-off points for PHS contribute to the ongoing discourse on
defining thresholds for effective risk prediction. The use of monoclonal
antibodies (mAbs) in the treatment of AD has shown considerable
promise, particularly in targeting and reducing amyloid-beta plaques,
which are a key pathological feature of AD (Leggins et al., 2023). Despite
this, several significant limitations and challenges persist with these
therapies. Monoclonal antibodies such as aducanumab, donanemab, and
lecanemab have demonstrated efficacy in reducing amyloid plaques;
however, translating these reductions into meaningful clinical benefits,
such as cognitive improvement, has been inconsistent and generally
modest (Heidebrink & Paulson, 2024, Söderberg et al., 2023). Addi-
tionally, mAb treatments are associated with adverse side effects, high
costs, accessibility issues, uncertain long-term outcomes, and variability
in patient responses depending on genetic factors and the stage of the
disease. In this context, PHS calculations become particularly valuable.
By assessing the genetic risk of patients, clinicians can personalize
monitoring strategies, ensuring that individuals at higher genetic risk
are closely observed for any changes in cognitive function or biomarker
levels during treatment. Utilizing PHS in clinical trials can enhance the
selection of participants who are more likely to benefit from the therapy,
thereby improving the overall efficiency and effectiveness of the trials. It
also aids in stratifying patients based on their genetic risk, allowing for
more precise analysis of treatment outcomes (Zhou et al., 2021).
Furthermore, the integration of PHS and lifestyle modifications repre-
sents a promising approach to the prevention of AD, especially for those
with a genetic predisposition. This strategy parallels the management of
other multifactorial diseases, such as type 2 diabetes and cardiovascular
diseases, where genetic risk is mitigated through lifestyle interventions.
By identifying individuals at genetic risk and implementing targeted
lifestyle changes, it is possible to mitigate the risk and potentially delay
or prevent the onset of AD (Kivipelto et al., 2018, Lourida et al., 2019).

Table 4
Correlations of baseline GAP-43 and NFL levels with cognitive tests in theMCI
subgroup during follow-ups.

GAP-43 baseline

MMSE CDR-SB ADAS11 ADAS13 MoCA

Baseline
rs -0.244 0.099 0.144 0.225 -0.165
p 0.0006 0.169 0.046 0.001 0.022
padj 0.003 0.849 0.232 0.008 0.111

Year one
(12 months)

rs -0.191 0.149 0.280 0.262 -0.222
p 0.008 0.040 9.11E-

05
0.0002 0.002

padj 0.040 0.202 0.0004 0.001 0.010
Year two
(24 months)

rs -0.215 0.162 0.364 0.358 -0.250
p 0.003 0.025 3.20E-

07
6.04E-
07

0.0005

padj 0.015 0.127 1.60E-
06

3.02E-
06

0.002

Year three
(36 months)

rs -0.225 0.211 0.339 0.325 -0.238
p 0.001 0.003 2.23E-

06
6.23E-
06

0.001

padj 0.009 0.018 1.12E-
05

3.12E-
05

0.005

Year four
(48 months)

rs -0.273 0.264 0.261 0.257 -0.299
p 0.0001 0.0002 0.0003 0.0004 5.43E-

05
padj 0.0009 0.001 0.001 0.002 0.0002

Plasma NFL Baseline
MMSE CDR-SB ADAS11 ADAS13 MoCA

Basline rs -0.242 0.063 0.165 0.224 -0.242
p 0.0007 0.383 0.022 0.001 0.0007
padj 0.003 1 0.113 0.009 0.003

Year one (12
months)

rs -0.271 0.140 0.225 0.294 -0.203
p 0.0001 0.055 0.001 3.86E-

05
0.004

padj 0.0007 0.275 0.008 0.0001 0.024
Year two (24
months)

rs -0.214 0.231 0.312 0.329 -0.275
p 0.003 0.001 1.44E-

05
5.00E-
06

0.0001

padj 0.016 0.006 7.21E-
05

2.50E-
05

0.0007

Year three (36
months)

rs -0.348 0.287 0.376 0.403 -0.342
p 1.13E-

06
6.72E-
05

1.26E-
07

1.27E-
08

2.25E-
06

padj 5.66E-
06

0.0003 6.32E-
07

6.33E-
08

1.13E-
05

Year four (48
months)

rs -0.371 0.335 0.339 0.383 -0.381
p 2.65E-

07
3.07E-
06

2.90E-
06

1.11E-
07

1.69E-
07

padj 1.32E-
06

1.53E-
05

1.45E-
05

5.57E-
07

8.43E-
07

rs= r value of the Spearman partial correlation test.
Abbreviations: MCI, mild cognitive impairment; GAP-43, Growth-associated
Protein 43; NFL, neurofilament light chain; MMSE, mini-mental state exami-
nation; CDR-SB, clinical dementia rating scale sum of boxes; ADAS, Alzheimer’s
disease assessment scale; MoCA, Montreal cognitive assessment.
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Continued research and personalized intervention strategies will be
essential in maximizing the benefits of this approach. The focus of future
research should be the validation of these observed correlations between
GAP-43, NFL, and cognitive decline in larger populations while ac-
counting for follow-up periods. A valuable topic of investigation could
also include the exact process that causes cognitive decline due to
biomarker levels, which can be explored through interventional studies.
Finally, considering PHS as a robust genetic prediction aid, exploring the
potential of combining established biomarkers of cognitive decline with
GAP-43 and NFL measurements could be a starting point for a powerful
personalized tool for the early detection of AD.

5. Conclusion

Our results showed how differences in the overall adjusted genetic
susceptibility to AD can account for part of the differences in the pre-
dictive potential of synaptic and axonal degeneration for cognitive
decline in individuals in the AD dementia continuum. Considering ge-
netic predispositions can improve the prediction of cognitive outcome
and AD progression, which could ultimately result in earlier identifica-
tion and treatment planning for AD. Further studies are warranted to
specify the influence of genetic susceptibility on the neurodegerative
biomarkers and cognitive decline.
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